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LETTER TO THE EDITOR

Discussion of the article “Vibration of pretwisted cantilever shallow conical
shells™, Int. J. Solids Structures Vol. 31, No. 18, pp. 2463-2476 (1994), by K. M.
Liew, C. W. Lim and L. S. Ong

This article alleges to calculate the vibrational frequencies of various twisted turbine blades
by a Rayleigh—Ritz method with polynomial expansions. However, the article contains
errors in principle with regard to the use of shallow shell theory which render questionable
almost all of the results. This letter is intended to discuss these errors. We begin with a brief
discussion of general shell theory principles followed by a statement of the assumptions
behind the shallow shell theory approximation. In this letter, we are not proposing a
correction to the authors’ analysis ; rather, we are pointing out the violations of the shallow
shell assumptions.

The most general form of shell theory starts with a coordinate system ({,, {;) embedded
in the middle surface of the shell, which lies in a larger Euclidean space described by
Cartesian coordinates (x, y, z). The formulation of displacements, membrane strains, cur-
vatures, stress resultants, and bending moments, and the derivation of the governing
equations is done entirely with respect to the intrinsic middle surface coordinates. For
example, the displacement vector, as measured from a global system of Cartesian coor-
dinates, is resolved into components pointing in the local middle surface coordinate system.
Other quantities are treated in a similar manner. The final boundary value problem is given
in terms of ({;, ;).

In certain cases where the radii of curvature of the undeformed shell are much larger
than the characteristic lengths in the middle surface, the shell is plate-like, and shallow shell
theory may be invoked to transform the problem from the middle surface coordinates into
coordinates lying in the basal plane onto which the undeformed shell is projected. This
process imposes several restrictions which the twisted, tapered blade geometries of this
study do not satisfy.

In the shallow shell theory approximation, the reference configuration of the middle
surface is written in the form

R(x,y) = r(x,y)+z(x, )k = xi+yj+zk

where the coordinates (x, ) are a set of basal plane coordinates (as in fact adopted by the
authors). The metric tensor in these coordinates is given by

Gup = (g())o(/f +Za.Zp

where (g,),4 1s the metric in the basal plane. The curvature tensor is expanded in a similar
manner. When complete, the assumptions behind the theory are:

(1) The metric tensor g.; ~(go),s» Which is subject to the shallowness restriction
(90)*z 4z s « 1. This is a fundamental requirement.

(2) The curvature tensor b,; of the undeformed middle surface is given by —z .

(3) Covariant differentiation in the middle surface plane (). is equivalent to covariant
differentiation in the basal plane (). This assumption is closely linked with the
first assumption since the Christoffal symbols are derived from the derivatives of
the metric tensor.

(4) The strain tensor is given by
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1
E:x[i = E(ua,ﬁ + uﬁ.a) —_ M)Z‘aﬂ

where u, are the basal plane displacements and w is the displacement normal to
the basal plane.
(5) The bending curvature tensor is the same as in plate theory,

Kdﬁ = — w.aﬂ'

This requires that |u,|/R « O(w/L), where L is the characteristic in-plane length of
the vertical deflection and R is the smallest principal radius of curvature of the
undeformed middle surface. In addition, this form of the linear bending curvature
tensor is only valid when L « R, otherwise additional terms appear (Niordson,
1985).

The first problem is that the authors do not seem to appreciate the basic coordinate
system assumptions behind shallow shell theory, which is clearly evidenced in the first full
sentence on p. 2465 :

“The displacements are resolved into three orthogonal components u, v, and w
with respect to the midsurface of the shell with » along the x-axis, v tangential
to the midsurface, and w normal to it.”’

However, this statement itself is not consistent with the authors’ subsequent analysis, which
does appear to measure the displacements with respect to the basal plane.

The first error in this analysis is the violation of the shallowness assumption (1). This
is most clearly demonstrated for untwisted cylindrical blades, where the opening angle 8, in
the authors’ terminology can be shown to be limited by the requirement that tan® (6,/2) « 1.
If an error 0(0.01) is adopted, then 6, ~ 12°. The use of §, = 30° throughout most of the
authors’ results gives tan® (15°) ~ 0.07, which is not really « 1. The superposition of an
axial twist of Y on top of the cylindrical panel results in the restriction that
tan’(y + 6,/2) « 1, which is totally violated by the authors’ subsequent analyses of twist
angles as large as ¥ = 45°. The shallow shell approach is good only for small amounts of
twist on cylindrical blades with small opening angles. This argument is just as valid,
although a bit more complicated, for the authors’ conical blades. The authors have even
cited a form of this restriction in Lim and Liew (1994) ; however, they have not adhered to
1t.

The second major error in this analysis is the violation of the conditions associated
with assumption (5). For the “long” cantilevered beams studied (see the authors’ Table 2),
the fundamental mode is a bending-type motion, as in fact suggested by the authors’ own
mode shapes. However, the analysis in this paper will not accurately capture the lowest
frequency since the characteristic length, L = a, is greater than R in many of the authors’
geometries, and this is a clear violation of the assumptions behind (5).

The form of the bending curvature tensor in assumption (35) is associated with the
often cited restriction that the stresses due to bending are less than or equal to the stresses
due to membrane forces for shallow shell and Donnell-Mushtari—Vlasov theories to be
accurate. [t is inappropriate to apply these theories for cantilevered shells since the bending
stresses then greatly dominate membrane stresses.

The serious effect of the authors’ error on their results can be detected by suppressing
all in-plane displacements and derivatives in the y-direction, and then taking the variation
of their energy functional to obtain the differential equation

d'w 12w
dx' | (hR)?

pw’
—W.
D

When the characteristic length L = a along with the dimensionless variables w = w/L and
% = x/L are introduced, this equation becomes
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d*w (Lz )2 _pw’L*w

—+12W hA]E D

In many of the geometries considered by the authors, the dimensionless parameter in the
second term of this equation has a value in excess of 1000 which greatly dominates the
leading bending term and so the analysis cannot recapture the “beam-like” behavior of
these geometries. This inaccuracy is a direct result of improper kinematic assumptions.

A third error can be seen in the authors’ eqns (5) on p. 2465, which are not consistent
with the assumption (4) on the form of the strain tensor. There appears to be several
incomplete and missing terms describing the z ., tensor for the twisted conical blade. As a
result, the approach may well fail even for conical blade geometries that are amenable to
the shallow shell analysis.

We close with some examples of the inaccuracy of these results in comparison with
those given by finite element analyses. For numerical comparison, we study several geo-
metries corresponding to results given in Table 2 on p. 2471. The values selected are:
By = 30°, 6, = 15° s/h = 1000. Four lengths a/s = 0.2, 0.3, 0.5 and 0.8 for four twists
Y =0°15° 30° and y = 45° are considered. (Such a large value of the thickness parameter
s/h makes one wonder what possible practical application the authors had in mind.)

Our calculations were conducted with two commercial finite element packages : LUSAS
and STRAND®G. The analyses employed 8-node semi-loof elements. Each element has 32
degrees of freedom: three displacements per node and two loof rotations on each side
spaced between nodes. The meshes, in order of increasing a/s, contained 10 x 30, 8 x 35,
7 x40, and 6 x 60 elements. The elements were “almost™ square in shape. The mesh results
have been verified against a range of vibration problems and checked for convergence.
Results for “long” untwisted geometries were also compared to beam theory predictions.
Table 1 shows the LUSAS calculations for the first two dimensionless frequency parameters
(corresponding to those in the authors’ Table 2), together with the percentage differences
of the authors’ values with respect to our values shown in parentheses—a positive value
indicates the authors’ results are higher than ours.

The demonstration of the authors’ mistake is in the long (a/s = 0.8) untwisted blade
results, which differ significantly from the finite element calculations. The fact that the
percentage difference with the finite-element results increases with length is a clear example

Table 1. Values of frequency parameter /; = w;(by)*\/(ph/D) for
the first two modes of a twisted conical shell clamped at one
end, with 6, =30° 6,=15° s/h=1000. The results were
obtained with the LUSAS finite element package, with values in
brackets being the percentage difference of Liew & Lim’s results

from these

¢ afs 4y (% error) Ay (% error)

0° 0.2 1.9047 (10.3%) 3.0518 (1.2%)
0.3 0.86749 (18.4%) 2.1482 (1.3%)
0.5 0.32779 (39.4%) 1.5651 (1.4%)
0.8 0.14552 (91.3%) 0.55036 (29.4%)

15° 0.2 1.3861 (6.6%) 4.0388 (4.1%)
0.3 0.73216 (15.3%) 2.4906 (3.4%)
0.5 0.30865 (37.1%) 1.4654 (10.9%)
0.8 0.14299 (88.6%) 0.53595 (30.1%)

30° 0.2 0.97675 (—3.3%) 4.3306 (3.0%)
0.3 0.55570 (4.7%) 2.5599 (4.5%)
0.5 0.26823 (26.7%) 1.2420 (10.0%)
0.8 0.13624 (77.5%) 0.49817 (30.9%)

45° 0.2 0.77081 (—20.0%) 3.5265 (—7.3%)
0.3 0.44180 (—15.1%) 2.0265 (—6.6%)
0.5 0.22871 (3.3%) 1.0086 (1.9%)
0.8 0.12713 (50.0%) 0.44816 (28.4%)
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of the violation of the geometric restriction that L « R. The twisted blade results violate
the shallowness assumption and are also significantly different from the finite element
results.

The error in this analysis are serious enough that all of the calculations must be viewed
with scepticism. There may be sufficient information in this incorrect formulation to capture
some of the physical trends for cantilevered twisted and untwisted shells; however, this
should be regarded as coincidental.
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